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Abstract

Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be
strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully
understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change
of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope
distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without
a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635 nm. The employ-
ment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the
dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly
predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better under-
standing of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the
semiconductor industry.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the radiative properties of semiconduc-
tors is essential for the advancement of manufacturing
technology, such as rapid thermal processing for annealing
and chemical vapor deposition [1]. Because the major heat-
ing source in rapid thermal processing is lamp radiation,
knowledge of radiative properties is important for the ther-
mal budget and temperature control during the process. A
challenging problem is the accurate measurement of wafer
temperature based on radiation thermometry, which is pre-
ferred because of its non-intrusiveness and fast response
[2,3]. The accuracy of radiation thermometry can be
affected by emittance changes and background radiation,
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especially when a surface is rough, such as the backside
of silicon wafers. Surface roughness affects not only the
emittance of a wafer but also the directional distribution
of the reflected radiation by scattering [4–6]. The emittance
of a rough surface can be simply obtained from directional
radiative properties, based on Kirchhoff’s law and the
conservation of energy [6–8]. Furthermore, knowledge of
directional radiative properties allows modeling of radia-
tive heat transfer between rough surfaces and thereby mod-
eling of an effective emittance with the consideration of
background radiation [9,10]. Therefore, a detailed under-
standing of the directional radiative properties associated
with scattering from rough surfaces is essential for temper-
ature measurements in rapid thermal processing.

The bidirectional reflectance distribution function
(BRDF) describes spatial distribution of light scattered
from rough surfaces and can be used to calculate other
radiative properties. Rigorous approaches to predict the
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Nomenclature

fr bidirectional reflectance distribution function,
sr�1

G energy of ray bundles
h unit vector perpendicular to the plane of inci-

dence or reflection
r Fresnel’s reflection coefficient
s unit vector in the direction of incidence or reflec-

tion
v unit vector parallel to the plane of incidence or

reflection
w root-mean-square slope

Greek symbols

fx microfacet slope in x-direction
fy microfacet slope in y-direction

h zenith angle, deg
k wavelength in vacuum, m
q microfacet reflectivity
r root-mean-square roughness, m
s autocorrelation length, m
/ azimuthal angle, deg
x solid angle, sr

Subscripts

i incidence
p p-polarization (TM wave)
r reflection
s s-polarization (TE wave)
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BRDF of rough surfaces usually involve the numerical
solution of Maxwell’s equations, considering the surface
topography and the dielectric properties of materials
[11,12]. Because of the complexity of electromagnetic the-
ory, however, a number of approximate techniques such
as perturbation theory, the Kirchhoff approximation, and
the geometric optics approximation (GOA) have been
widely used [13–15]. GOA assumes that effects of interfer-
ence and diffraction are negligible and a surface is com-
posed of numerous microfacets where an incident ray
reflects specularly. Under these assumptions, ray-tracing
techniques can be applied to predict the BRDF either with
the appropriate analytical expression [16–19] or with the
Monte Carlo method [20–23].

Most studies on light scattering assume that roughness
is random and follows Gaussian statistics [11–23]. How-
ever, this assumption breaks down for many natural or
engineered surfaces, which reveal non-Gaussian and aniso-
tropic statistics [24–28]. Zhu and Zhang [27,28] demon-
strated that the slope distribution function (SDF) of
several microrough silicon surfaces is non-Gaussian and
highly anisotropic, even though the height distribution is
close to a Gaussian function. The non-Gaussian and aniso-
tropic features may be attributed to chemical etching,
which is a common process to remove surface defects.
Due to limitations of the analytical approach, only in-plane
BRDFs with first-order scattering were considered in the
works of Zhu and Zhang [27,28].

In the present work, the BRDF of anisotropic surfaces is
modeled using Monte Carlo ray-tracing methods. The
decomposition of polarization upon reflection by the ran-
domly oriented microfacets of a two-dimensional (2-D)
surface is taken into account. Two ray-tracing algorithms
are developed to implant the measured surface topographic
data from an atomic force microscope (AFM): one based
on the surface topography and the other based on the
SDF. The applicability of the Monte Carlo method is ver-
ified by comparison with the BRDF measured with a laser
scatterometer [29]. Furthermore, by depositing a gold film
onto the rough silicon surfaces using an e-beam evapora-
tor, the study of light scattering by non-Gaussian and
anisotropic surfaces is extended to metallic surfaces.

2. Monte Carlo ray-tracing methods

Based on GOA, the BRDF can be predicted with analyt-
ical models or Monte Carlo ray-tracing methods. Analyti-
cal models of GOA are usually reduced from the Kirchhoff
approximation in a short wavelength limit [13–15] while
some models are derived from statistical ray tracing
[16,17]. An analytical model of the BRDF is proportional
to the SDF and the reflectivity of a material. The use of
an analytical formula allows the convenient calculation of
the BRDF without a lengthy numerical procedure as
required by the Monte Carlo method. However, most
analytical models deal with first-order scattering only.
Although some analytical expressions have incorporated
multiple scattering, additional assumptions must be made
and the model cannot fully capture the characteristics of
multiple scattering [16,17]. Multiple scattering becomes sig-
nificant for surfaces with large slopes or for large angles of
incidence or reflection. On the other hand, in the Monte
Carlo method, a large number of rays are illuminated on
a rough surface and traced numerically until they leave
the surface [20–23]. Numerical ray tracing with the Monte
Carlo method allows the complete treatment of multiple
scattering. The propagating direction of each ray is deter-
mined from the specular reflection at a microfacet, and
its energy is reduced by the reflectivity obtained from Fres-
nel’s reflection coefficient. The BRDF is obtained from a
ratio between the energy of rays reflected into a given solid
angle and the energy of all incoming rays.

Distinguished by how to simulate rough surfaces, two
ray-tracing techniques can be applied for modeling the
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BRDF using the Monte Carlo method: the surface genera-
tion method (SGM) [20,21] and the microfacet slope
method (MSM) [22,23]. SGM is the most commonly used
ray-tracing method, in which a surface realization (i.e., a
numerically generated rough surface) is required prior to
tracing the ray bundles. A surface realization provides a
discrete surface profile, from which all statistical descrip-
tions of a rough surface can be calculated. Therefore, the
origin and direction of reflection is determined based on
the physical location and orientation of the microfacet that
the ray strikes. BRDF is obtained from an ensemble aver-
age over a sufficiently large number of surface realizations.
On the other hand, MSM takes advantage of a basic con-
cept of GOA; for an incident ray, only the normal vector of
a microfacet determines the reflection direction of rays and
the reflectivity according to Fresnel’s formula. The numer-
ical generation of a rough surface profile is not necessary;
rather, the orientation of a microfacet is generated for each
incoming ray. The generation of the normal vector of a
microfacet is based on the SDF and the direction of an
incoming ray [23]. Because a surface profile does not exist
in MSM, the optical path of a propagating ray and whether
the ray re-strikes the surface cannot be directly determined.
Hence, MSM relies on a shadowing function, which is the
probability that a reflected ray re-strikes another surface
facet, to model multiple scattering. The use of the shadow-
ing function imposes a limitation of the MSM, such that it
cannot be applied for very rough surfaces at oblique inci-
dence or large reflection angles [30]. In addition, the shad-
owing function is not available for anisotropic surfaces and
the adoption of a shadowing function to an anisotropic
surface introduces further approximation. The advantage
of MSM is that it takes less computational time than
SGM and can be applied to multiscale problems, such as
light scattering from semitransparent materials [22,23].
More detailed discussion and intercomparison of the two
ray-tracing algorithms can be found in the previous publi-
cations [21,23,30].

A common method for surface realizations in SGM is to
use a power spectrum, known as the spectral method
[14,31,32]. The power spectrum contains information for
both vertical and lateral scales of roughness in the Fourier
space, and its inverse Fourier transform yields a surface pro-
file. The power spectrum and the autocovariance function,
which is the autocorrelation function multiplied by a vari-
ance r2, are a Fourier transform pair. Therefore, a rough
surface, defined by an autocorrelation function and a
root-mean-square (rms) roughness, is usually generated
with the spectral method, regardless of whether the autocor-
relation function is Gaussian or not [31]. If the Gaussian
autocorrelation function is used, that surface realization is
simply referred to as a Gaussian surface. Even though the
power spectrum of anisotropic silicon wafers used in the
present study can be obtained from surface topography
measured with an AFM [33], it is not feasible to generate
an anisotropic surface with this method. Knotts et al. [34]
fabricated 1-D randomly rough surfaces to compare theory
and experiment in light scattering. They measured the
topography of the fabricated surfaces with a stylus profi-
lometer and showed that the measured surface statistics
are not consistent with Gaussian statistics in higher-order
probability densities. They found that the prediction for
1-D rough surfaces based on the direct use of the topo-
graphic measurements yields much better agreement with
experiment. In the present study, the method of direct imple-
mentation is extended to the study of 2-D rough surfaces.
The surface topographic data from the AFM measurement
were stored in a 2-D array of surface height, which can be
conveniently incorporated into the SGM algorithm.

In MSM, unique information on roughness is taken
from the SDF to determine the orientation of microfacets.
The SDF of anisotropic surfaces can be numerically evalu-
ated as a 2-D histogram using topographic data [27]. A
weight function must be included in generating the normal
vector of a microfacet because, statistically, the incident
energy that is intercepted by the microfacet depends not
only on the SDF but also on the projected area of the
microfacet. Lee et al. [23] used the rejection method to gen-
erate the normal vector of microfacets following a weighted
SDF with uniform random numbers. Because the rejection
method is suitable for any type of distribution function as
long as a comparison function is appropriately selected
[35], the algorithm developed by Lee et al. [23] is also appli-
cable for the SDF of anisotropic surfaces with a new com-
parison function. Using a Gaussian functional form, new
comparison functions are selected to be always greater than
the SDF by adjusting both an rms value of the Gaussian
function and a multiplying constant. Meanwhile, the Smith
shadowing function [36] determines the probability of re-
striking in MSM, and it requires the ratio of rms roughness
r to autocorrelation length s as an input. For Gaussian
surfaces, the rms slope w is equal to

ffiffiffi
2
p

r=s [13,14]. This
relation ensures that SGM and MSM yield the same results
in the regime where MSM is valid [30]. However, the sur-
faces used in the present study do not obey this relation.
The difference between SGM and MSM for anisotropic
surfaces will be further examined.

Most published works on the use of the Monte Carlo
method in predicting BRDFs and calculating the radiative
heat transfer between rough surfaces do not consider the
polarization effect [5,20–23,37–39]. However, the polariza-
tion state generally changes upon reflection by a 2-D rough
surface because of the random orientation of microfacets
[13–15]. As a result, the polarization of the scattered wave
is different from that of the incident wave, i.e., depolariza-
tion occurs. In a different type of ray-tracing method, the
amplitude of the electric field is traced, considering both
phase and polarization rather than the intensity of rays
[40]. This method is beyond the domain of GOA and
requires a normalization to observe energy conservation.
Therefore, the present study extends the Monte Carlo
method based on GOA to modeling the BRDF by taking
into account the change of the polarization state in
the ray-tracing algorithm. The microfacet reflectivity is



Fig. 1. Schematic of incident and scattered waves. Here, x, y, and z are the
global coordinates, where the x–y plane is the mean plane of a rough
surface. hi and /i are the zenith and azimuthal angles of incidence, whereas
hr and /r are the zenith and azimuthal angles of reflection, respectively. si

and sr are unit vectors in the direction of incidence and reflection,
respectively. A unit vector hi is perpendicular and a unit vector vi is parallel
to the plane of incidence, whereas unit vectors hr and vr are perpendicular
and parallel to the plane of reflection, respectively.
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calculated in the local coordinates using Fresnel’s reflection
coefficients, considering the change of the polarization state.

The incident light may be decomposed into two linear
polarizations: s-polarization (TE wave) and p-polarization
(TM wave). The electric field or the magnetic field is perpen-
dicular to the plane of incidence for s-polarization or p-
polarization, respectively. In a 2-D rough surface, even
though the incident light is purely s- or p-polarized, both
polarization components are present in the local coordi-
nates of a microfacet. The geometrical relations between
wave vectors and polarization vectors delineate the contri-
bution of each polarization to the reflectivity. As illustrated
in Fig. 1, unit vectors in the direction of incidence and reflec-
tion, si and sr, are defined with the zenith angles (hi and hr)
and azimuthal angles (/i and /r) in the following manner:

si ¼
� sin hi cos /i

� sin hi sin /i

� cos hi

0
B@

1
CA; sr ¼

sin hr cos /r

sin hr sin /r

cos hr

0
B@

1
CA ð1Þ

In global coordinates, the vectors si and z define the plane
of incidence, and the vectors sr and z define the plane of
reflection. A unit vector hi perpendicular and a unit vector
vi parallel to the plane of incidence characterize the two
polarizations of the incident wave. Here, hi indicates the
electric field for s-polarization and vi for p-polarization.
Similarly, unit vectors hr and vr represent the two polariza-
tions of the reflected wave. Hence,

hi¼
z� si

jz� sij
¼

sin/i

�cos/i

0

0
B@

1
CA; hr¼

z� sr

jz� srj
¼
�sin/r

cos/r

0

0
B@

1
CA ð2Þ

vi¼ hi� si¼
coshi cos/i

coshi sin/i

�sinhi

0
B@

1
CA; vr¼ hr� sr¼

coshr cos/r

coshr sin/r

�sinhr

0
B@

1
CA
ð3Þ
Calculation of the reflectivity involves two conversions
of the polarization components. The s- and p-polarization
components of incidence defined in the global coordinates
are first converted to counterparts in the local coordinates.
The local polarization components are multiplied by Fres-
nel’s reflection coefficients, respectively, and then converted
to the global components. Accordingly, the microfacet
reflectivities for co-polarization and cross-polarization
can be expressed as follows [18,19]

qss ¼ jðvr � siÞðvi � srÞrs þ ðhr � siÞðhi � srÞrpj2=jsi � srj4 ð4aÞ
qsp ¼ jðhr � siÞðvi � srÞrs � ðvr � siÞðhi � srÞrpj2=jsi � srj4 ð4bÞ
qps ¼ jðvr � siÞðhi � srÞrs � ðhr � siÞðvi � srÞrpj2=jsi � srj4 ð4cÞ
qpp ¼ jðhr � siÞðhi � srÞrs þ ðvr � siÞðvi � srÞrpj2=jsi � srj4 ð4dÞ

where r denotes complex Fresnel’s reflection coefficient for
a given polarization. In the microfacet reflectivities, sub-
scripts s and p stand for each polarization while the first
and second subscripts stand for the incidence and the
reflection, respectively.

In terms of the microfacet reflectivities, the reflected
energies Gr,s and Gr,p are related to the incident energies
Gi,s and Gi,p by

Gr;s

Gr;p

� �
¼

qss qps

qsp qpp

" #
Gi;s

Gi;p

� �
ð5Þ

The reflectivity, defined as a ratio of the reflected energy,
Gr = Gr,s + Gr,p, to the incident energy, Gi = Gi,s + Gi,p, de-
pends on the incident polarization state. To facilitate calcu-
lation, the incident energy of each ray is set to unity such
that (Gi,s,Gi,p) = (1, 0) for s-polarization, (Gi,s,Gi,p) = (0,1)
for p-polarization, and (Gi,s,Gi,p) = (0.5,0.5) for random
polarization (i.e., unpolarized incidence). For the first
reflection, Gr,s and Gr,p are calculated from Eq. (5). For
multiple reflections, the previously reflected energies are
substituted for Gi,s and Gi,p, and the next reflected energy
is updated according to Eq. (5). Each ray is traced until
it leaves the surface, and then the information on its direc-
tion and energy for each polarization is stored in a
database.

In a special case where the planes of incidence and
reflection are identical, the polarization state is maintained
for either s- or p-polarization if only first-order scattering is
involved. Therefore, the vectors hi and hr are parallel or
antiparallel (refer to Fig. 1); consequently, hi � sr = 0 and
hr � si = 0. From Eq. (4), qsp and qps vanish, while qss = jrsj2
and qpp = jrpj2. The corresponding BRDF is called the
in-plane BRDF (/r = /i or /r = /i + 180�). The cross-
polarization term is non-zero even for in-plane BRDF
when multiple scattering occurs.

After a large number of ray bundles are traced, the
BRDF can be calculated in terms of the energies of the
ray bundles [6]:

frðk; hi;/i; hr;/rÞ ¼
1

Giðhi;/iÞ
DGrðhr;/rÞ
cos hrDxr

ð6Þ
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where Gi(hi,/i) is the total energy of the incident ray bun-
dles and DGr(hr,/r) is the energy of ray bundles leaving the
surface within the solid angle Dxr in the direction (hr,/r).
The integration of the BRDF yields the directional-
hemispherical reflectance. The directional emittance can
be obtained according to the conservation of energy and
Kirchhoff’s law [6]. Knowledge of the BRDF enables the
calculation of the emittance of a rough surface and allows
further study of the apparent or effective emittance of
the surface considering the effect of surrounding radiation
[5–10]. Note that the prediction of emittance via modeling
the BRDF allows consideration of the effects of specific
roughness statistics on emittance. Lee et al. [8] showed that
the emittance of anisotropic wafers can be noticeably dif-
ferent from that of a Gaussian surface with the same rms
roughness and autocorrelation length.

3. Surface characterization and BRDF instrumentation

Two silicon samples (Si-1 and Si-2) were selected from
the wafers studied by Zhu and Zhang [28]. The wafers
are lightly doped, 100 mm in diameter, and h100i single
crystalline. Two gold samples (Au-1 and Au-2) were pre-
pared by cutting Si-1 and Si-2 into 25 � 25 mm2 square
pieces and depositing a gold film with an e-beam evapora-
tor (CVC SC 5000) at the same time. A quartz crystal
microbalance monitor displayed the thickness of a film
during deposition within a relative uncertainty of 10%. A
20 nm thick titanium film was deposited directly onto the
silicon substrate to prevent the gold film from peeling off.
Next, a gold film with a thickness of 100 nm was deposited.
The exact thickness is not important because the gold coat-
ing is thick enough to assume an opaque surface in the
measurement and calculation of BRDFs.

The four samples were characterized with an AFM
made by Digital Instruments (Dimension 3100 SPM).
Zhu and Zhang [28] obtained the surface topography of
the silicon wafers in the contact mode with silicon nitride
tips, whose radius is less than 60 nm. In the contact mode,
lateral or shear forces can distort surface features and
reduce spatial resolution. Thus, deep valleys may not be
correctly measured. This disadvantage resulted in spurious
distributions for precipitous slopes [28]. In the present
study, AFM scanning was performed in the tapping mode
with sharper silicon tips, whose radius is less than 10 nm.
At the expense of scanning speed, the AFM in the tapping
mode with sharper tips allows measurement of precipitous
slopes. The measured topographic data for a scanning area
of 100 � 100 lm2 were stored in a 512 � 512 array.
According to the instrument specifications, the uncertainty
of the AFM measurement is estimated to be 3% both ver-
tically and horizontally.

The surfaces of Si-1 and Si-2 were scanned five times
each. The height distribution functions of the two samples
look very similar to each other and resemble a Gaussian
function although they have small negative values of skew-
ness. The height distribution functions obtained in the
present study are very similar to the previous work by
Zhu and Zhang [28] and thus will not be presented.
Because of its importance to the modeling, the SDF and
its contour for Si-1 and Si-2 are plotted in Fig. 2. Both
SDFs are non-Gaussian and anisotropic while the aniso-
tropy of Si-1 is not as striking as that of Si-2. The SDF
of Si-1 in Fig. 2a shows only one dominant peak at the cen-
ter, indicating that a large number of microfacets are
slightly tilted. The SDF of Si-2 also has a dominant peak
at the center, though smaller than that of Si-1. Moreover,
four large side peaks at jfxj � jfyj � 0.36, and three small
side peaks at jfxj � jfyj � 1.09 appear in Fig. 2b. The con-
tour plot clearly shows the three small side peaks although
four of them are expected because of symmetry. Zhu and
Zhang [28] demonstrated that the large and small side
peaks are associated with the formation of {311} and
{111} planes, respectively, during chemical etching in
(10 0) crystalline wafers. Their measurement could not dis-
tinctly resolve the small side peaks due to the artifacts of
the AFM, but the new measurement as shown in Fig. 2b
clearly reveals three out of four small side peaks. The large
and small side peaks in the SDF correspond to microfacets
with inclination angles of 27.1� and 57.0�, respectively.
However, the angles formed by {311} and {111} planes
with respect to the (100) surface are, respectively, 25.2�
and 54.7�, which are smaller than what the AFM measure-
ments show. The large difference in the slopes cannot be
explained by the 3% uncertainty in the AFM measure-
ment, but may be caused by various artifacts, such as tip
convolution. Depending on the size and shape of the tip
compared to the curvature of surface roughness, tip convo-
lution can cause the measured profile to be rougher or
smoother than the actual topography, and these effects
may exceed the specified uncertainty [41,42].

The rms roughness r, the rms slope w, and the autocor-
relation length s are listed in Table 1, along with other per-
tinent parameters. For an anisotropic surface, w and s vary
with the azimuthal angle /. However, based on the four-
fold symmetry of Si-1 and Si-2, only the average values
of w and s over four representative directions, i.e., row
(fx = 0), column (fy = 0), and two diagonals (fx = fy and
fx = �fy) are presented. The difference in w or s for row,
column, and diagonal cases is almost negligible despite
the anisotropic SDF of the two samples.

Since the gold samples were made by depositing thin
films onto the silicon surfaces, it was expected that the
SDF would not change much before and after the deposi-
tion. The topographic measurements of Au-1 and Au-2
were obtained with the same AFM two times each, and
the average roughness statistics are listed in Table 1 for
comparison. The SDFs of Au-1 and Au-2 (not presented)
resemble those of Si-1 and Si-2 shown in Fig. 2, respec-
tively. Although the calculated values of w of Au-1 and
Au-2 are slightly greater than those of Si-1 and Si-2, they
are within the standard deviation of AFM measurements
of silicon samples. As a result, it is assumed that Si-1 and
Au-1 or Si-2 and Au-2 have the same surface statistics



Fig. 2. 2-D slope distribution obtained from AFM measurements in 3-D plot (upper) and contour plot (lower). (a) Si-1; (b) Si-2.

Table 1
Sample description and roughness statistics

Sample Si-1 Si-2 Au-1 Au-2

Crystalline orientation h100i h100i N/A N/A
Growth method CZ CZ N/A N/A
Doping type P P N/A N/A
Resistivity, X cm 4310–6970 10–40 N/A N/A
Thickness, lm 525 500 0.1 0.1
r, lm 0.51 ± 0.03 0.63 ± 0.04 0.50 0.65
w (along row/column) 0.28 ± 0.01 0.47 ± 0.04 0.29 0.50
w (along diagonals) 0.28 ± 0.01 0.47 ± 0.04 0.29 0.50
s, lm (along row/column) 4.4 ± 0.4 3.1 ± 0.2 4.0 3.0
s, lm (along diagonals) 4.3 ± 0.4 3.1 ± 0.2 3.9 3.1
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despite the presence of the thin gold films. In the calcula-
tion of SGM, all seven sets of topographic data were used.
Similarly, an averaged SDF based on the seven measure-
ments was used in MSM. Because the shadowing function
in MSM is developed for Gaussian surfaces, roughness
parameters should be represented as one value. According
to the seven topographic data sets, the rms roughnesses of
Si-1 (or Au-1) and Si-2 (or Au-2) are 0.51 and 0.64, res-
pectively. Similarly, after further averaging over the four
representative directions for w and s, w = 0.28 and
s = 4.2 were used for Si-1 (or Au-1) and w = 0.48 and
s = 3.1 for Si-2 (or Au-2).

The BRDF of the silicon wafers was measured with a
laser scatterometer, specifically the three-axis automated
scatterometer (TAAS) [29]. The TAAS is capable of mea-
suring both the in-plane and out-of-plane BRDF. Three
computer-controlled rotary stages change the zenith angle
of incidence hi, zenith angle of reflection hr, and azimuthal
angle of reflection /r. A manually controllable dial can
vary the azimuthal angle of incidence /i. A semiconductor
diode laser served as a coherent source for the measure-
ment of BRDFs. A stationary detector measures the inci-
dent power while another movable detector measures the
reflected power. Since the movable detector blocks illumi-
nation, the BRDF within ±2.5� of the retroreflection direc-
tion (hr = hi and /r = /i) cannot be measured with the
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TAAS. The outputs of the two detectors are magnified by
two pre-amplifiers and sent to a lock-in amplifier. The lock-
in amplifier sends an oscillating current to a controller of
the laser system and picks up the oscillating current from
detected signals, thus eliminating the effect of background
radiation in BRDF measurements. A computer controls
the movement of the rotary stages and reads positions of
those stages and outputs of the detectors. The half-cone
angle of the solid angle subtended by the movable detector
is approximately 0.5�, and thus a high angular resolution is
achievable. Comparisons with a reference reflectometer at
the National Institute of Standards and Technology indi-
cate that the relative difference is within 5% [29].

4. Results and discussion

All the measured BRDFs are taken at a laser wavelength
k = 635 nm in the present study. The refractive indices of
silicon and gold are 3.88 + 0.019i and 0.181 + 3.10i, respec-
tively, at this wavelength [43]. Therefore, the silicon wafers
of approximately 500 lm thickness are opaque to the laser
light. For the gold film, the thickness of 100 nm is much
greater than the photon penetration depth of 16 nm.
Fig. 3. Comparison of the in-plane BRDF of Si-1 for random polarization. (a
hi = 45� and /i = 45�.
Although the local thickness of a film is reduced by the
cosine of the microfacet inclination angle, it remains more
than three times the penetration depth at an inclination
angle of 60�. Furthermore, since the reflected radiation
must travel through the gold film twice, the gold film can
be safely regarded as semi-infinite in the measurement
and calculation of BRDFs.

The angular resolution of Dh and D/ was set to 1� in the
Monte Carlo method. A post-processing step smoothed the
BRDF curves by averaging the values of nine adjacent
nodes to reduce statistical noise in the calculations. The
averaged SDF for the seven measurements is used in
MSM. With twenty million ray bundles, MSM calculations
result in a relative standard deviation less than 10% when
the calculated values of fr coshr are larger than 0.01.
SGM calculations are performed on each of the seven
topographic surfaces. A quarter million ray bundles are
used for each surface, and BRDFs are averaged for the
seven surfaces. The relative standard deviation for SGM
is less than 30%, except around hr = 0� where the calcu-
lated BRDF fluctuates due to the small solid angle
(Dxr = sinhrDhrD/r). Although the number of ray bundles
in MSM can be increased to reduce numerical fluctuations,
) hi = 0� and /i = 0�; (b) hi = 0� and /i = 45�; (c) hi = 45� and /i = 0�; (d)
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the number in SGM is limited to the number of topo-
graphic measurements, resulting in a larger standard devi-
ation. It takes 20 min for SGM and 40 min for MSM to
complete the calculation of each sample using a computer
with a 3.2 GHz Pentium 4 processor and 2 GB memory.
Although MSM is generally faster than SGM in calcula-
tion, the former takes more time than the latter due to
the following reasons. The rejection method requires much
more time for anisotropic surfaces than for Gaussian sur-
faces. The large difference between a weighted SDF and a
comparison function increases the probability that a micro-
facet generated with uniform random numbers is rejected
until another microfacet is accepted. The more microfacets
that are rejected, the longer it takes to accept a microfacet
that would follow the correct SDF of the surface [35]. It
takes less time for MSM than for SGM to achieve the same
standard deviation.

Predicted and measured in-plane BRDFs are compared
first to verify the Monte Carlo ray-tracing algorithms. Note
that the azimuthal angles /i and /r are measured from the
x-axis in the counter-clockwise direction as shown in
Fig. 1. When hi = 0�, both the azimuthal angle of incidence
/i and the plane of incidence become arbitrary. Neverthe-
less, if hi is treated as infinitesimal, /i can be defined even at
hi = 0�. Similarly, /r can be also defined when hr = 0�.
Fig. 4. In-plane BRDF of Si-2 for random polarization. (a) hi = 0� and /i = 0�;
After the planes of incidence and reflection are identified,
two linear polarizations of incidence and the in-plane
BRDF (/r = /i or /i + 180�) are subsequently defined at
hi = 0� and hr = 0�. As mentioned earlier, depolarization
does not occur for the in-plane BRDF with first-order scat-
tering. The fourfold symmetry of the SDFs shown in Fig. 2
implies that the BRDF along the row (/i = 0�) essentially
equals to that along the column (/i = 90�). The equality
also holds for those along the two diagonals (/i = 45�
and 135�). Calculated in-plane BRDFs for /i = 0� and
90� are averaged and indicated as /i = 0� for the row and
column directions. Similarly, calculation results for /i =
45� and 135� are averaged and indicated as /i = 45� for
the two diagonal directions.

The in-plane BRDFs of Si-1 for random polarization are
shown in Fig. 3 for different values of hi and /i. Throughout
this paper, the BRDF is presented in terms of fr coshr, which
is proportional to the reflected energy. Here, the observa-
tion angle hobs is defined as hr when /r = /i + 180� and
�hr when /r = /i. Fig. 3 shows that SGM and MSM essen-
tially yield the same results, which agree reasonably well
with measurements for all the cases. The measured and pre-
dicted BRDFs agree well at the specular peak hobs = �45�
for hi = 45�. Because the BRDF within ±2.5� in the retro-
reflection direction cannot be measured with the TAAS,
(b) hi = 0� and /i = 45�; (c) hi = 45� and /i = 0�; (d) hi = 45� and /i = 45�.



Fig. 5. Predicted first scattering and multiple scattering for the in-plane
BRDF of Si-2 at hi = 45� and /i = 45�. (a) s-polarization; (b) p-
polarization, where the contribution of multiple scattering is magnified
by a factor of 10 to make it clear.
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no data are available for�2.5� < hobs < 2.5� in Fig. 3a and b
and for �47.5� < hobs < �42.5� in Fig. 3c and d. It is well-
known that scattering in the retroreflection direction can
be greatly enhanced [44]. Thus, any interpolation or extra-
polation of the BRDF in this region is not acceptable.
Numerical fluctuations of SGM appear around hobs = 0�
due to the small solid angle. The predicted BRDF curves
for /i = 0� as shown in Fig. 3a and c have much more dis-
tinct shoulders than the measured, which may be caused by
the artifacts in the AFM measurements. It should be noted
that the reproducibility of the BRDF measurements is very
good [29]. Around the specular and retroreflection direc-
tions or at large hr, the effect of wave interference may be
sufficient to invalidate the assumption of geometric optics.
Therefore, the limitation of GOA may be responsible for
the overprediction in Fig. 3c when hobs > 75�.

Fig. 4 shows the same comparison for Si-2, which has
larger r and w and is more anisotropic than Si-1. In
Fig. 4a, prediction and measurement agree well, except
near hobs = 0�, where the measurements within ±2.5� could
not be taken and the prediction has large fluctuations.
While the Monte Carlo methods capture the general fea-
tures and trends of the measured BRDF, relatively large
discrepancies appear in other cases, especially when side
peaks occur. When hi = 0� and /i = 45�, the BRDF curves
shown in Fig. 4b exhibit two large side peaks. These side
peaks are associated with the side peaks in the SDF of
Si-2 at jfxj � jfyj � 0.36; see Fig. 2b. The Monte Carlo
methods also predict the side peaks in the BRDF, but they
fail to predict their position and magnitude accurately. The
predicted side peaks are located on the average at hr = 57�
whereas the measured are at 50�. The inclination angle of
microfacets is half of hr at hi = 0�. Therefore, the measured
side peaks in the BRDF correspond to an inclination angle
of 25�, which is very close to the angle of 25.2� between any
of the four {311} planes and the (100) plane. On the other
hand, the predicted side peaks correspond to an inclination
angle of 28.5�. This value is almost the same as that calcu-
lated from the average slope of jfxj = jfyj = 0.38 (28.0�),
indicating consistency with the AFM measurements. Con-
sequently, the position of the side peaks obtained from
BRDF measurements is more reliable than that predicted
by the Monte Carlo methods using the AFM measure-
ments. Due to the artifacts in the AFM measurements,
BRDF values are overpredicted when 50� < hr < 80� and
underpredicted when 15� < hr < 50� (noticeably for MSM)
in Fig. 4b.

When hi = 45� as shown in Fig. 4c and d, the two Monte
Carlo methods noticeably overpredict BRDFs around the
specular peak and underpredict at large observation angles.
The overprediction is approximately 27%, presumably
because the decrease in the optical roughness, defined as
rcoshi/k, has invalidated the assumptions made in GOA
[13,14]. The underprediction at 60� < hobs < 85� may result
from the artifacts in the AFM measurements and the lim-
itation of GOA. In Fig. 4d, MSM yields smaller values at
large hobs than SGM. Multiple scattering is usually signifi-
cant at large reflection angles and causes the difference
between SGM and MSM, which will be discussed later.
When hi = 45� and /i = 45�, a small side peak appears at
hobs = �60� in the measured BRDF curve and at
hobs = �71� in the predicted curves as shown in Fig. 4d.
Zhu and Zhang [28] attributed the small side peak to
microfacets having {111} orientation with an inclination
angle of 54.7�. Accordingly, the small side peak should
occur at hobs = �54.7 � 2 + 45 = �64.4� if geometric
optics is valid. The location of the small side peaks in the
measured BRDF deviates from the predicted angles based
on the crystalline orientation by 4.4�, which is significantly
worse than the agreement for the large side peaks.

The effect of multiple scattering on the BRDF was inves-
tigated using SGM, which is more accurate since it does
not employ the shadowing function. Only the results for
Si-2 at hi = 45� and /i = 45� are shown in Fig. 5 for each
polarization to illustrate the contribution of multiple scat-
tering. The component of multiple scattering for s-polari-
zation is discernable, albeit small. Due to the small
contribution of multiple scattering for p-polarization, the
component of multiple scattering in Fig. 5b is magnified
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by a factor of 10. As the local incidence angle increases,
qss = jrsj2 monotonically increases, whereas qpp = jrpj2
decreases to zero at the Brewster angle, which is 75.5� for
silicon at 635 nm wavelength, and increases rapidly beyond
the Brewster angle. If the reflectivity is small, the energy of
ray bundles experiencing multiple scattering will be further
reduced. Thus, multiple scattering is insignificant for p-
polarization. The decrease of qpp also explains why the
specular peak for p-polarization is greatly reduced and
becomes comparable to the large side peak, as seen from
Fig. 5b. The contribution of multiple scattering to the
directional-hemispherical reflectance is 6% for s-polariza-
tion and 3% for p-polarization, resulting in 4.5% for
random polarization. The modeling also shows that the
contribution of multiple scattering to the directional-hemi-
spherical reflectance is less than 3% for Si-1 in the case of
random polarization. This is consistent with the different
slope distributions of Si-1 and Si-2. For the Au surfaces,
on the other hand, multiple scattering contributes to the
directional-hemispherical reflectance by less than 5% for
Au-1 and by approximately 9% for Au-2, regardless of
the polarization. This is because the reflectivity of gold is
high and the difference between qss and qpp is small.
Fig. 6. Comparison of the in-plane BRDF of Au-1 at hi = 30� for random
polarization. (a) /i = 0�; (b) /i = 45�.
The slight increase in multiple scattering at large hobs, as
shown in Fig. 5, accounts for some of the disagreement
between the BRDFs predicted by MSM and SGM as
shown in Fig. 4. The disagreement between MSM and
SGM is largely caused by the methods’ differences in han-
dling multiple scattering. The introduction of a shadowing
function allows MSM to include re-striking to some extent,
but it is not possible to fully account for the shadowing
effect [22]. The Smith shadowing function takes the ratio
r/s as an input. For Gaussian surfaces, the rms slope is
related to the rms roughness and the autocorrelation
length, w ¼

ffiffiffi
2
p

r=s. For the studied surfaces, however, w

is not equal to
ffiffiffi
2
p

r=s, suggesting that the use of the shad-
owing function is only an approximation. In computation,
r/s = 0.21 is used as the input of the shadowing function
because the use of w resulted in unacceptably large differ-
ences of the directional-hemispherical reflectance between
the two methods. At hi = 45� and /i = 45�, MSM predicted
that multiple scattering contributes to the directional-hemi-
spherical reflectance of Si-2 by 11% for s-polarization and
5% for p-polarization. For Au-2, MSM predicted that the
contribution of multiple scattering to the directional-hemi-
spherical reflectance is 16% for either polarization. The
Fig. 7. In-plane BRDF of Au-2 at hi = 30� for random polarization.
(a) /i = 0�; (b) /i = 45�.
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shadowing function overpredicts multiple scattering and,
subsequently, results in smaller BRDFs at large hobs.

The in-plane BRDFs of Au-1 for random polarization
are presented in Fig. 6 at hi = 30� for two azimuthal inci-
dence angles. The BRDF within �27.5� < hobs < �32.5�
cannot be measured due to beam blocking. The same sur-
face topographic data were used for BRDF calculations
of Au-1 and Si-1. Because they possess the same roughness
statistics, comparison shows similar trends for Au-1 and
Si-1. However, the microfacet reflectivities of silicon and
gold are 0.35 and 0.93 at normal incidence, respectively,
and accordingly the BRDF of Au-1 is nearly three times
that of Si-1. Furthermore, the measured BRDF curves exhi-
bit two split peaks around the specular reflection hobs = 30�,
which is more distinct at /i = 45�. Similar split peaks are
observed for different values of hi including 45�. The Monte
Carlo methods based on GOA do not predict the split
peaks. Hence, wave interference may be important for
highly reflecting surfaces. Future research is needed to study
the effect of wave interference on gold-coated surfaces.

Fig. 7 shows the in-plane BRDF of Au-2. Measurements
also display split peaks around the specular direction at
both /i = 0� and /i = 45�. The difference between predic-
Fig. 8. Comparison of the out-of-plane BRDF of Si-2 at hi = 0� and /i = 45�.
(c) experiment for p-polarization; (d) SGM calculation for p-polarization.
tion and measurement around the specular direction in
Fig. 7 is smaller than that in Fig. 4c and d because the opti-
cal roughness is larger at hi = 30� than at hi = 45�. The
reflection angle corresponding to the small side peak is very
large (around hobs = �80�), and thus reflected rays are
likely to re-strike another microfacet and be redirected.
As a result, the small side peak is barely observed in exper-
iment and SGM prediction. However, MSM overpredicts
the small side peak in this case because of the difficulty in
correctly modeling multiple scattering.

Fig. 8 shows the measured out-of-plane BRDFs of Si-2
at hi = 0� and /i = 45�, along with those predicted by
SGM. At this azimuthal angle of incidence, the in-plane
BRDF is along /r = 45� and /r = 225�. Because of the sym-
metry, the BRDF curves are only shown for /r from 0� and
45�. The BRDF depends little on /r when hr < 15�, suggest-
ing that the reflection is nearly isotropic at small hr. As
hr increases, the dependence on /r increases and then
decreases, becoming negligible at hr > 80�. For 15� < hr

< 80�, the BRDF increases with /r since the large side peak
in the SDF is located along /r = 45�. The BRDF for
s-polarization is greater than that for p-polarization at
/r = 45�, and the difference decreases with reducing /r.
(a) Experiment for s-polarization; (b) SGM calculation for s-polarization;



Fig. 9. Out-of-plane BRDF of Au-2 at hi = 0� and /i = 45�. (a) Experiment for s-polarization; (b) SGM calculation for s-polarization; (c) experiment for
p-polarization; (d) SGM calculation for p-polarization.
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The BRDFs for the two polarizations are essentially the
same at /r = 0�. These trends can be understood by consid-
ering the microfacet reflectivities. For in-plane reflection
(/r = 45�), qss = jrsj2 and qpp = jrpj2 while qps = qsp = 0.
From Eq. (5), Gr = Gr,s + Gr,p = qss for s-polarization
and Gr = qpp for p-polarization. This results in a larger
BRDF for s-polarization than for p-polarization at
/r = 45�. For out-of-plane reflection (/i 6¼ /r), depolariza-
tion occurs and increases with j/i � /rj. For hi = 0� and
/i = 45�, it can be shown that hr � si = 0 and hi � sr = �vi � sr

at /r = 0�. Substitution of these relations to Eq. (4) gives
qpp = qsp = jrpj2 and qss = qps = jrsj2. Consequently, Gr =
jrpj2 + jrsj2 becomes the same for either incident polariza-
tion. In other words, although the incidence is purely s- or
p-polarized, it is evenly decomposed into s and p compo-
nents in the local coordinates of the microfacet; thus, the
BRDFs at /r = 0� are the same for both polarizations.
The predicted BRDFs also indicate the same trend as the
measured. Because the change of the polarization state is
considered, the Monte Carlo methods can account for the
dependence of BRDF on the polarization. Despite the good
qualitative agreement, prediction shows notable disagree-
ment with the experiment around the side peaks for
/r = 45�, similar to the observations made earlier with
Fig. 4b.

The measured and predicted out-of-plane BRDFs of Au-
2 are compared in Fig. 9 under the same conditions as those
in Fig. 8. Because the same surface topographic data were
used for Si-2 and Au-2, the features of scattering are very
similar to those shown in Fig. 8 and will not be repeated.
Compared to the results in Fig. 8, the large microfacet
reflectivity of a gold film significantly increases the BRDF.
Because the effect of polarization on the microfacet reflec-
tivity of gold is not as significant as on that of silicon, the
BRDFs for two polarizations differ only slightly.

The out-of-plane BRDFs of Au-1 and Au-2 predicted
with MSM at hi = 30� are presented in Fig. 10 as contour
plots in a polar coordinate system. MSM was chosen
because it reduces numerical fluctuations with small stan-
dard deviations. In these plots, the radial and azimuthal
coordinates, respectively, correspond to hr and /r, and the
z-axis represents fr coshr. Because first-order scattering is
dominant, all the BRDFs resemble the contour plot of
SDFs in Fig. 2. The BRDFs depend little on /r around
the specular direction, but the dependence becomes large
as angular separation from the specular peak increases.



Fig. 10. BRDF predicted by MSM at hi = 30� for random polarization: (a) Au-1 at /i = 0�; (b) Au-1 at /i = 45�; (c) Au-2 at /i = 0�; (d) Au-2 at /i = 45�.
In the polar contour plots, the radial coordinate corresponds to hr, and the azimuthal coordinate corresponds to /r.
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The region where the BRDF is independent of /r is broader
for Au-1 than for Au-2 because Au-1 is not as anisotropic as
Au-2. The predicted BRDFs for Au-2 display a strong spec-
ular reflection peak along with the four large side peaks
associated with {31 1} planes. In addition, a small side peak
associated with a {111} plane appears at large hr in Fig. 10c
at /r = 294� and another in Fig. 10d at /r = 45�. The actual
magnitude of the small side peaks may be smaller than that
predicted by MSM, and their positions may shift towards a
smaller hr. Nevertheless, Fig. 10 indicates that the Monte
Carlo method is an effective technique to study the BRDF
of surfaces with anisotropic roughness.

5. Conclusions

For the first time, the measured 2-D topographic data
from an AFM are incorporated into the Monte Carlo ray-
tracing methods to model the BRDF of dielectric and metal-
lic surfaces whose roughness follows non-Gaussian and
anisotropic statistics. The agreement between the model
prediction and the experimental measurement demonstrates
that the use of the measured surface topography is essential
for modeling the BRDF of anisotropic surfaces. The consid-
eration of the change of the polarization state is necessary to
correctly model the out-of-plane BRDF. Surface character-
ization indicates that the gold and silicon surfaces are statis-
tically the same, and thus their BRDFs describe many
features in common. However, the occurrence of the split
peaks in the specular direction only for gold surfaces implies
that the effect of wave interference prevails more for gold
surfaces than for silicon surfaces. The Monte Carlo method
predicts that first-order scattering is dominant for both sil-
icon and gold surfaces. Some differences between prediction
and measurement are observed and mainly ascribed to the
artifacts in the AFM measurement and the limitation of
GOA. The versatile Monte Carlo modeling tools developed
through the present study help gain a better understanding
of the directional radiative properties of microrough sur-
faces and, furthermore, will have an impact on thermal
metrology in the semiconductor industry.
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